Combining Formal and Probabilistic Modeling in Resilient Systems Design

Azad M. Madni University of Southern California

Combining Formal and Probabilistic Modeling in Resilient Systems Design

> Azad M. Madni Michael Sievers University of Southern California

> > April 3-4, 2019

2019 Conference on Systems Engineering Research Washington, D.C.

> USCViterbi School of Engineering Systems Architecting and Engineering

This Photo by Unknown Author is licensed under CC BY

Outline

- 21st Century DoD Systems
- Engineered Resilience
- System Modeling
- Formal Probabilistic Approach
- Exemplar Problem
- Experimentation Testbed
- Initial Findings
- Summary

21st Century DoD Systems

- High complexity (hyper-connectivity, dependencies)
- Long-lived (> 20 years)
- Likely to be extended / adapted for over lifetime
- Stringent physical and cyber security
- Need dependability + adaptability + proactive error prevention
- Need to operate safely in dynamic, uncertain environments subject to disruptions
- To address these challenges, we need new models, methods and tools

Engineered Resilience is a Difficult and Messy Problem...Why?

- Requirements: can be imprecise (especially initially)
- Actions: can be unclear (especially initially)
- Environment: can be unknown or partially known (partial observability, unknown hostile and/or deceptive actors)
- System states: can be ambiguous (uncertainty)

These characteristics are incompatible with traditional, invariant modeling methods

Systems Modeling

- Primary means for engineering systems including resilient systems
- A fragmented area for engineering resilient systems
- Most serious problems result from the gap between requirements and models that need to reflect requirements
 - contribute to poor flow down of system requirements to software requirements
- Different aspects of system behavior represented by different models
 - need to harmonize different models

System Modeling Requirements

- Verifiability (correctness)
- Flexibility (to adapt to changing conditions)
- Bidirectional reasoning support (resilience-related decisions)
- Scalability and extensibility (no. of agents, interconnections)
- Exploit partial information to generate value (not "data hungry")
- Learn from new observations (system and environment states)

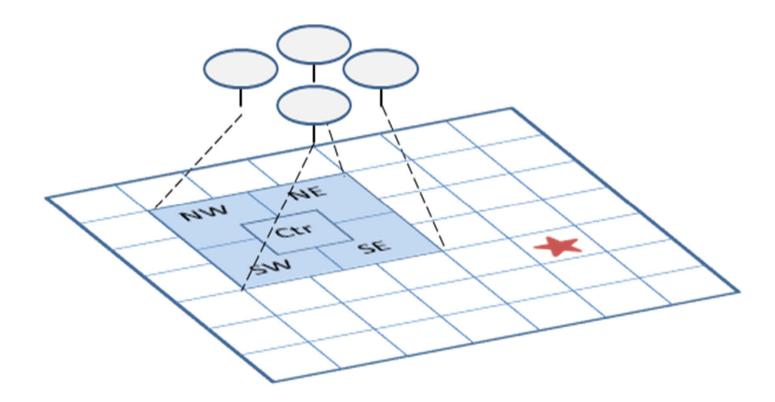
Formal Probabilistic Approach

- Combines formal and probabilistic modeling with heuristics
 - enables flexibility (resilience)-verifiability (safety) tradeoffs
 - heuristics: help contain combinatorial explosion in state space
- Exploits reinforcement learning
 - learning of system states and environment with new evidence
 - system states model: Partially Observable Markov Decision Process
 - provides value even with partial information
- Employs a layered architecture
 - planning and decision making (top level) and control (bottom level)
 - decisions and information flow from top level to bottom level
 - execution constraints flow from bottom level to top level
 - global objectives have precedence over local goals (if conflict)
- Defines new construct: Resilience Contract
 - balance system verifiability and system flexibility requirements

Exemplar Problem: Multi-UAV Operations

- UAVs used in missions in which environment is largely unknown and potential hostile with deceptive actors
- UAVs have to complete mission safely with original / descoped objectives
- UAVs can experience malfunctions and disruptions
- A mathematical model of environment is seldom available
- UAVs have collection assets to sense the environment
- UAVs can employ reinforcement learning to progressively learn the environment from sensed information
 - e.g., use RL to navigate through changing, partially observable environments

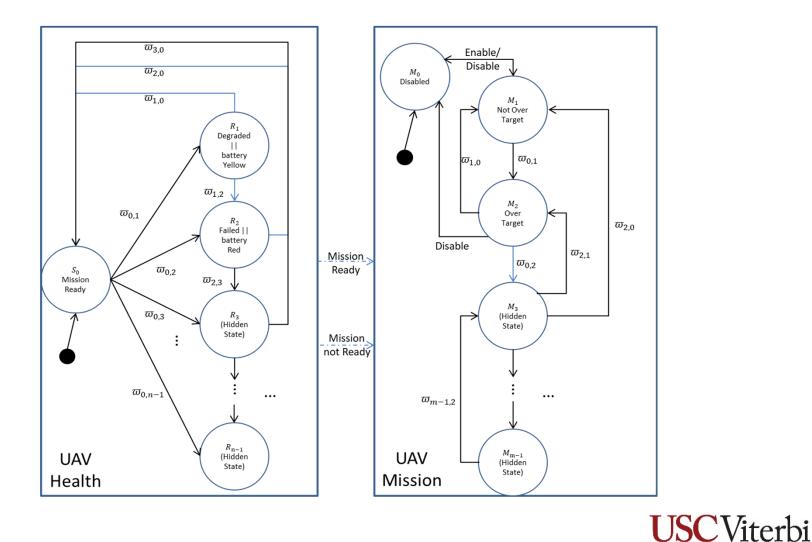
What Resilience Means for Problem Domain



- **Operate safely** in dynamic, uncertain environments
 - tolerate / survive systemic faults and failures
 - adjust / adapt to environmental disruptions
 - protect / defend against physical and cyber threats
 - reconfigure / restructure to minimize impact of disruptions (e.g., security breaches, loss of sensing node or comm link)
- Accomplish goals with incomplete information
 - e.g., navigate safely to destination with partial observability

UAV position relative to a recon target (red star) and FOV (blue)

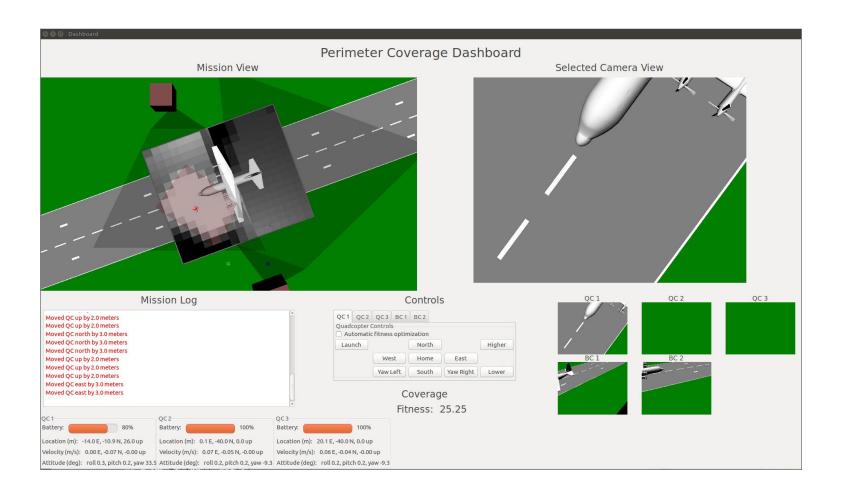
Exemplar Contracts



- 1. \neg overTarget && healthy && batteryGreen \rightarrow move_to_target
- 2. ¬batteryRed && degraded || batteryYellow \rightarrow move_to_base
- 3. batteryRed || failed \rightarrow land
- 4. unknownHealth || unknownBattery \rightarrow move_to_base
- 5. overTarget && CTR && healthy \rightarrow takeImages & hover
- 6. overTarget && NW && healthy \rightarrow takeImages & move SE
- 7. overTarget && NE && healthy \rightarrow takeImages & move SW
- 8. overTarget && SW && healthy \rightarrow takeImages & move NE
- 9. overTarget && SE && healthy \rightarrow takeImages & move NW

Simplified POMDP: Health and Mission Models

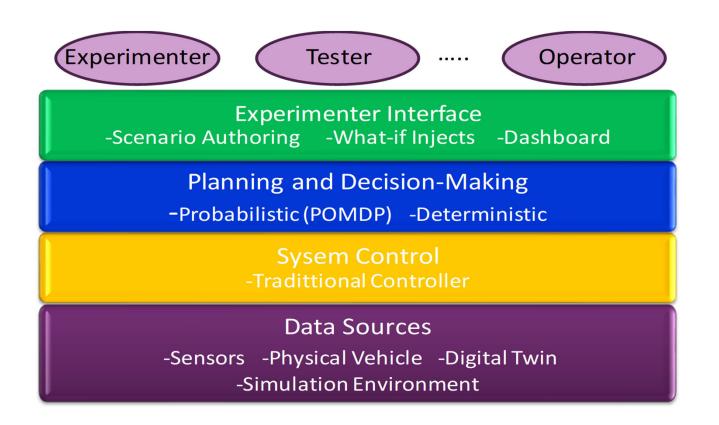
Multi-UAV Dashboard Prototype


Capabilities

- customizable dashboard for monitoring and control of simulated or physical vehicles
- Underlying technologies
 - dronekit platform with visualization facilities
 - quadcopters (hardware) and quadcopter simulation models
 - quadcopter planning and decision-making model
 - quadcopter controller
- Key capabilities
 - simulated vehicles exhibit behavior of physical vehicle
 - same commands used to control vehicle models and physical vehicles (quadcopters)
 - can switch from simulated vehicles to physical vehicles

Dashboard Showing Camera View of Flying Quadcopter

Dashboard Showing 3 Flying QCs With One Low on Battery and Landing



Copyright © 2014-2019 Azad M. Madni

Experimentation Testbed Architecture

School of Engineering Systems Architecting and Engineering

Prototype Testbed

Quadcopters

- driven by Raspberry Pi and Navio Flight Controller
- > full IMU: 3-axis accelerometers, rate gyros, magnetometer
- inputs from laptop and/or remote controller
 - control values (throttle, roll-pitch-yaw)
 - perform autonomous flight
- Instrumented Testbed
 - > layered architecture (UI, planning and DM, control, data sources)
 - customized Python scripts for vehicle control
 - dronekit framework and commands
 - semi-autonomous flights
 - launch, take-off, hover, and perform limited waypoint navigation
 - context-sensitive monitoring and control dashboard
 - monitor vehicle status and control vehicle
 - communicate with simulated vehicles and physical system

Prototype Testbed Hardware

Findings To-Date

- Key problem in implementing hybrid models
 - resolving mismatch between planning & decision-making layer and vehicle control layer
- Mismatch resolution
 - ensure that propagated commands from PDM layer to controller do not violate physical and regulatory constraints
 - propagate execution constraints from control layer to PDM layer for PDM layer to take into account when issuing commands
 - incorporate heuristics (e.g., priorities, region of influence) to resolve conflicts and simplify computation

Findings To-Date (cont'd)

- POMDP and vehicle controller work on different time scales
 - dynamics model runs every 0.01 seconds (accuracy)
 - POMDP runs slower (high level decisions/commands)
 - waypoint navigation problem with goal of minimizing response time to action
 - ideal sampling period for POMDP determined experimentally
- Simultaneous creation of prototype and testbed good strategy
 - introduced rigor in experimentation
 - compatible with introducing Digital Twin
 - currently: able to switch between simulation model and physical system
 - future: incorporate operational data from physical twin into Digital Twin
- Monitoring and execution dashboard a key capability
 - facilitated understanding and debugging of vehicle behaviors

Summary

- 21st Century Systems need to be safe, resilient and affordable
- Have to operate in uncertain, hostile and deceptive environment with partial observability
- System model verifiability is needed for system safety
- System model flexibility is needed for resilient behavior
- Such capabilities beyond traditional systems modeling capabilities
- Resilience Contract, a probabilistic approach based on POMDP, when coupled with heuristics and reinforcement learning, can satisfy safety, resilience and improved performance needs
- Our research is demonstrating viability of this approach with different CONOPS and resilience mechanisms

Thank You

