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21st Century DoD Systems  

■ High complexity (hyper-connectivity, dependencies)
■ Long-lived (> 20 years)
■ Likely to be extended / adapted for over lifetime
■ Stringent physical and cyber security
■ Need dependability + adaptability + proactive error prevention
■ Need to operate safely in dynamic, uncertain environments 

subject to disruptions
■ To address these challenges, we need new models, methods 

and tools



Copyright © 2014-2019 Azad M. Madni

Engineered Resilience is a Difficult
and Messy Problem…Why?

■ Requirements: can be imprecise (especially initially)
■ Actions: can be unclear (especially initially)
■ Environment: can be unknown or partially known (partial 

observability, unknown hostile and/or deceptive actors)
■ System states: can be ambiguous (uncertainty)

These characteristics are incompatible 
with traditional, invariant modeling methods
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Systems Modeling 

■ Primary means for engineering systems including 
resilient systems

■ A fragmented area for engineering resilient systems

■ Most serious problems result from the gap between 
requirements and models that need to reflect requirements
 contribute to poor flow down of system requirements to 

software requirements

■ Different aspects of system behavior represented by 
different models
 need to harmonize different models
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System Modeling Requirements 

■ Verifiability (correctness)
■ Flexibility (to adapt to changing conditions)
■ Bidirectional reasoning support (resilience-related decisions)
■ Scalability and extensibility (no. of agents, interconnections)
■ Exploit partial information to generate value (not “data hungry”)
■ Learn from new observations (system and environment states)
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Formal Probabilistic Approach 

■ Combines formal and probabilistic modeling with heuristics
 enables flexibility (resilience)-verifiability (safety) tradeoffs
 heuristics: help contain combinatorial explosion in state space

■ Exploits reinforcement learning
 learning of system states and environment with new evidence 
 system states model: Partially Observable Markov Decision Process
 provides value even with partial information

■ Employs a layered architecture
 planning and decision making (top level) and control (bottom level)
 decisions and information flow from top level to bottom level
 execution constraints flow from bottom level to top level
 global objectives have precedence over local goals (if conflict)

■ Defines new construct: Resilience Contract
 balance system verifiability and system flexibility requirements 
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Exemplar Problem:
Multi-UAV Operations

■ UAVs used in missions in which environment is largely 
unknown and potential hostile with deceptive actors

■ UAVs have to complete mission safely with original / 
descoped objectives

■ UAVs can experience malfunctions and disruptions
■ A mathematical model of environment is seldom available
■ UAVs have collection assets to sense the environment
■ UAVs can employ reinforcement learning to progressively 

learn the environment from sensed information
 e.g., use RL to navigate through changing, partially 

observable environments
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What Resilience Means 
for Problem Domain

■ Operate safely in dynamic, uncertain environments 
 tolerate / survive systemic faults and failures
 adjust  / adapt to environmental disruptions 
 protect / defend against physical and cyber threats
 reconfigure / restructure to minimize impact of disruptions 

(e.g., security breaches, loss of sensing node or comm link)

■ Accomplish goals with incomplete information 
 e.g., navigate safely to destination with partial observability
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UAV position relative to a recon 
target (red star) and FOV (blue)
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Exemplar Contracts

1. ¬overTarget && healthy && batteryGreen → move_to_target

2. ¬batteryRed && degraded || batteryYellow → move_to_base

3. batteryRed || failed → land

4. unknownHealth || unknownBattery → move_to_base

5. overTarget && CTR && healthy → takeImages & hover

6. overTarget && NW && healthy → takeImages & move SE

7. overTarget && NE && healthy → takeImages & move SW

8. overTarget && SW && healthy → takeImages & move NE

9. overTarget && SE && healthy → takeImages & move NW
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Simplified POMDP: 
Health and Mission Models



Multi-UAV Dashboard Prototype

■ Capabilities
 customizable dashboard for monitoring and control of 

simulated or physical vehicles 

■ Underlying technologies
 dronekit platform with visualization facilities
 quadcopters (hardware) and quadcopter simulation models
 quadcopter planning and decision-making model
 quadcopter controller

■ Key capabilities 
 simulated vehicles exhibit behavior of physical vehicle  
 same commands used to control vehicle models and 

physical vehicles (quadcopters) 
 can switch from simulated vehicles to physical vehicles 
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Dashboard Showing Camera 
View of Flying Quadcopter
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Dashboard Showing 3 Flying QCs 
With One Low on Battery and Landing



Copyright © 2014-2019 Azad M. Madni

Experimentation Testbed 
Architecture 



Prototype Testbed 

■ Quadcopters
 driven by Raspberry Pi and Navio Flight Controller 
 full IMU: 3-axis accelerometers, rate gyros, magnetometer
 inputs from laptop and/or remote controller 

• control values (throttle, roll-pitch-yaw)
• perform autonomous flight 

■ Instrumented Testbed 
 layered architecture (UI, planning and DM, control, data sources)
 customized Python scripts for vehicle control 

• dronekit framework and commands 
 semi-autonomous flights 

• launch, take-off, hover, and perform limited waypoint navigation 
 context-sensitive monitoring and control dashboard 

• monitor vehicle status and control vehicle
• communicate with simulated vehicles and physical system 
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Prototype Testbed Hardware
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Findings To-Date

■ Key problem in implementing hybrid models  
 resolving mismatch between planning & decision-making layer and 

vehicle control layer

■ Mismatch resolution 
 ensure that propagated commands from PDM layer to controller do 

not violate physical and regulatory constraints
 propagate execution constraints from control layer to PDM layer for 

PDM layer to take into account when issuing commands
 incorporate heuristics (e.g., priorities, region of influence) to resolve 

conflicts and simplify computation



Copyright © 2014-2019 Azad M. Madni

Findings To-Date (cont’d)

■ POMDP and vehicle controller work on different time scales 
 dynamics model runs every 0.01 seconds (accuracy) 
 POMDP runs slower (high level decisions/commands) 

• waypoint navigation problem with goal of minimizing response time to action
• ideal sampling period for POMDP determined experimentally 

■ Simultaneous creation of prototype and testbed - good strategy
 introduced rigor in experimentation  
 compatible with introducing Digital Twin
 currently: able to switch between simulation model and physical 

system
 future: incorporate operational data from physical twin into Digital Twin

■ Monitoring and execution dashboard – a key capability
 facilitated understanding and debugging of vehicle behaviors
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Summary 

■ 21st Century Systems need to be safe, resilient and affordable
■ Have to operate in uncertain, hostile and deceptive environment with 

partial observability
■ System model verifiability is needed for system safety
■ System model flexibility is needed for resilient behavior
■ Such capabilities beyond traditional systems modeling capabilities
■ Resilience Contract, a probabilistic approach based on POMDP, 

when coupled with heuristics and reinforcement learning, can satisfy 
safety, resilience and improved performance needs

■ Our research is demonstrating viability of this approach with different 
CONOPS and resilience mechanisms
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Thank You


