A Knowledge Domain Structure to Enable System Wide Reasoning and Decision Making

Tjerk Bijlsma, Wouter Tabingh Suermondt, and Richard Doornbos

CSER 4th of April 2019
CONTENT

• Context
• Language elements and information structure
• Knowledge domain pattern
• Knowledge domain structure
• Conclusions
CONTEXT: SUPPORT REQUIRED TO HANDLE COMPLEXITY GROWTH

To architect and design a system, decisions on trade-offs have to be made
• Architect satisfies stakeholder needs by technical solutions

Trend is that the system complexity increases\(^1\)
• Number of functions, components, and interfaces increases

Reasoning about decision impact becomes increasingly hard
• Tracing the decision impact throughout the system is crucial

To handle complexity growth, architects require support for:
 - Understanding of and reasoning about decision impact
 - Tracing decision impact throughout the system

CONTEXT: DECOMPOSE SYSTEMS IN KNOWLEDGE DOMAINS

- Knowledge domain (KD): specific area of knowledge and information by a team

- Running example: electric bicycle case
 - Trade-off on cost and usage

Electric bicycle case
CONTEXT: DECOMPOSE SYSTEMS IN KNOWLEDGE DOMAINS

- Knowledge domain (KD): specific area of knowledge and information by a team

- Running example: electric bicycle case
 - Trade-off on cost and usage
 - Source of misunderstanding:
 1. Definitions or terminology
 2. Relations between knowledge domains
 3. Owner
 4. Knowledge domain scope
 5. Abstraction level
CONTEXT: REASONING, UNDERSTANDING, AND DECIDING IS THE CHALLENGE

• Other approaches
 - System architecting: provides multiple views but difficulties on making relations explicit
 - System designing: determine decision impact, but often lacks overview

• Challenge:
 - Reason, understand, and decide about the system-wide impact, whilst using explicit relation
 - Avoid sources of misunderstanding between knowledge domains to enable decisions
• Contributions:
 - Multi-disciplinary architecture reasoning structure, with explicit relations, for system wide reasoning and decision making
 - Knowledge domain pattern, to capture essential information
 - Relations, for both qualitative and quantitative reasoning
 - Approach was investigated and validated in the industrial context of Océ professional printing systems
LANGUAGE ELEMENTS TO CREATE AN INFORMATION STRUCTURE

Electric bicycle case

Frame
- Material: aluminium
- Cost: $400
- Default size is m. The size will effect the stiffness and cost of the frame
- Stiffness: 110 Nm/°/kg

Usage: recreation

Seat post
- Comfort: medium
- Cost: $50

Marketing
- Usage: recreation
- Frame cost: $400
- Seat post cost: $60

Information structure

Legend
- Language element
- Structure information
- Model
- Block
- Transformation
- Parameter
- Validation
- Relation

© www.quartet.com
© pixabay.com
© missionbicycle.com
Relate information:
- Relate qualitative
 - Relation (R) describe relations
- Relate quantitative
 - Transformations (T) and validations (V) between parameters
 - Model computes output values for transformation and validation

Information structure:

- Usability
 - Block
 - Frame
 - Stiffness: 110 Nm/° /kg
 - Cost: 400. - $
 - Material: aluminium

- Marketing
 - Usage: recreation
 - Frame cost: 400. - $
 - Seat post cost: 60. - $

- Seat post
 - Comfort: medium
 - Cost: 50. - $

Frame cost is around 4 times as high

Default size is m. The size will effect the stiffness and cost of the frame.

Usage: recreation

Frame stiffness: 100 Nm/° /kg

Seat post comfort: low

Model computes output values for transformation and validation.
KNOWLEDGE DOMAIN PATTERN TO STRUCTURE INFORMATION

Architect and owner
• Define the scopes of a knowledge domain via title and background
• Avoids misunderstanding via structured information

Pattern elements
- Essential information
- Advised information
- Visual supportive information

Diagram:
- Frame
 - Title
 - Main entity
 - Relation
 - Explanation
 - Transformation
- Seat post
 - Sub entity
 - Background
 - Main entity
 - Transformation
 - Explanation

- Frame:
 - Stiffness: 110 Nm/°/kg
 - Cost: 400.- $ (material: aluminium)

- Seat post:
 - Comfort: medium
 - Cost: 50.- $
KNOWLEDGE DOMAIN PATTERN ENABLES OWNER TO REASON

Reasoning:
• Qualitative
 - Via relations between blocks or parameters
 - Owner decides if changes needed to changing input
• Quantitative
 - Via transformations between parameters
 - Owner searches input values that result in the desired output values
• Knowledge domain owner decides if changes are acceptable

Frame
- Stiffness: 110 Nm/°/kg
- Cost: 400.- $
- Material: aluminium

Seat post
- Comfort: medium
- Cost: 50.- $

Frame cost is around 4 times as high

Default size is m. The size will effect the stiffness and cost of the frame
Relate knowledge domains (KDs)

- Validations decouple KDs
 - Colours shows agreement between KDs
 - Model is agreed contract between KDs
 - Observe impact of KD change on other KDs via validation
- Qualitative or quantitative reasoning over KDs on the impact of a change
- Absence of validation indicates KD isolation!
Knowledge domain structure enables system wide reasoning

- Avoids misunderstanding
 1. Explicit definitions and terminology
 2. Relates knowledge domains
 3. Shows owner
 4. Provides knowledge domain scope
 5. Similar abstraction levels

- Enables trade-off investigation for architecture or design decisions
• Validation indicates disagreement “Marketing” and “Usability”
 - Architect can search solution and understand the trade-off

Knowledge Domain Structure Trade-Off Example

Usability
- Lisa
- Frame stiffness: $100 \text{ Nm/°} / \text{kg}$
- Seat post comfort: low
- Efficiency: 93%
- Usage: recreation

Frame
- Default size is m. The size will effect the stiffness and cost of the frame
- Frame cost is around 4 times as high
- Stiffness: $110 \text{ Nm/°} / \text{kg}$
- Cost: 400.- $
- Material: aluminium

Seat post
- Cost: 50.- $
- Comfort: medium

Marketing
- John
- Usage: sports
- Frame cost: 400.- $
- Seat post cost: 60.- $
- Drivetrain cost: 150.- $

Electric Drivetrain
- Mary
- Efficiency: 95%
- Cost: 145.- $

© www.jbldrains.com

© missionbicycle.com
• Validation indicates disagreement “Marketing” and “Usability”
 - Architect can search solution and understand the trade-off
• Convince “Usability” knowledge domain to change
 - Validation between “Usability” and “Frame” shows disagreement

Usability
- Usage: recreation sports
 - Frame stiffness: **115 Nm/° /kg**
 - Seat post comfort: low
 - Efficiency: **95%**

Frame
- Default size is m. The size will effect the stiffness and cost of the frame
- Stiffness: 110 Nm/° /kg
 - Cost: 400.- $ (Material: aluminium)
 - Comfort: medium

Marketing
- Usage: sports
 - Frame cost: 400.- $ (Usage: recreation sports)
 - Seat post cost: 60.- $
 - Drivetrain cost: 150.- $

Electric Drivetrain
- Efficiency: 95%
 - Cost: 145.- $
• Validation indicates disagreement “Marketing” and “Usability”
 - Architect can search solution and understand the trade-off
• Convince “Usability” knowledge domain to change
 - Validation between “Usability” and “Frame” shows disagreement
• Convince “Frame” knowledge domain to change
 - Validation between “Frame” and “Marketing” shows disagreement

Reveals “Marketing” internal trade-off between “Usage” and “Frame cost”
• Update targets
• Investigate alternative solutions for “Usability” or “Frame” knowledge domains

Electric Drivetrain
- Efficiency: 95%
- Cost: 145.- $

Marketing
- Usage: sports
- Frame cost: 400.- $
- Seat post cost: 60.- $
- Drivetrain cost: 150.- $

Frame
- Frame stiffness: 115 Nm/° /kg
- Seat post comfort: low
- Efficiency: 95%
- Usage: recreation sports
- Frame cost is around 4 times as high
- Cost: 500.- $
- Material: aluminium
- Comfort: medium

Usability
- Usage: Lisa
- Usage: David
- Usage: John
- Usage: Mary
- Usage: sports
- Frame stiffness: 115 Nm/° /kg
- Seat post comfort: low
- Efficiency: 95%
- Usage: recreation sports
- Frame cost is around 4 times as high
- Cost: 500.- $
- Material: aluminium
- Comfort: medium

Seat post
- Cost: 50.- $
- Comfort: medium

Default size is m. The size will effect the stiffness and cost of the frame
CONCLUSIONS

A multi-disciplinary knowledge domain structure to support architects for qualitative and quantitative system-wide reasoning

- Knowledge domain pattern to capture essential information
- Explicit relations inside and between the knowledge domains
 • Decouple knowledge domains by validations that indicate the level of agreement
 • Trade-offs are made visible to support decisions
- Stake holders are coupled to technology in a diagram reflecting the organization

• Future work: structures to support reasoning in large industrial systems with hundreds of knowledge domains
QUESTIONS?