
© 2010 IDI Global Services Limited

Towards a taxonomy of

technical debt for COTS-

intensive cyber physical

systems

Ye Yang

Stevens Institute of Technology

Towards a taxonomy of technical debt for COTS-
intensive cyber physical systems

Ye Yang, Jon Wade, Dinesh Verma, Turki Alelyani (Stevens Institute of Technology)
Ronald Michel (RDECOM CERDEC)

Martin Törngren (KTH Royal Institute of Technology)

17th Annual Conference on Systems Engineering Research (CSER’19)
April 3, 2019 • Washington, DC

Outline

• Background

• Research Methodology

• Software Technical Debt

• COTS Technical Debt Taxonomy

• Conclusions

Background

• Obsolescence is a complex mix of engineering, economic, and
business issues with many associated uncertainties.

• Obsolescence is the inevitable consequences of dependence on
COTS components in many Cyber-Physical-Systems (CPS)

―Long lead time of CPS, tightly-coupled components, shorter upgrade cycle of
COTS, no control over COTS evolution, etc.

• “Future Combat System had 153 relevant systems to deal with. If every one
updated once a year, that would be a change every other day!”

---- Barry Boehm, USC

• “70 percent of electronics are obsolete prior to system fielding, and one
component may become obsolete five to ten times during the weapon
systems life cycle.” ---- Anthony Haynes, AMRDEC

Motivations

• Problem Statement:

― Obsolescence is the consequence of COTS
technical debt that can be possibly captured
and managed in early CPS life cycle activities,
i.e. COTS acquisition.

o exemplar forms for debt repayment

― planned systems upgrade, systems replacement costs,
or in the worst case, defaulted systems

• Motivations:

― The compelling need for a systems engineering
technical debt metaphor grows as well

― To increase awareness of COTS technical debt

― To support early identification, assessment,
and management of COTS technical debt

Acquisition
Phase

Maintenance &
Sustainment

Phase

Outline

• Background

• Research Methodology

• Software Technical Debt

• COTS Technical Debt Taxonomy

• Conclusions

Research Methodology

1
• Understanding

trend in COTS
related CPS
Obsolescence
studies

2
• Align existing

MPTs

• Identify gap

3
• Taxonomy

• Guidelines

• Meta attributes

Mapping Framework

COTS Technical Debt

Afternoon talk: A Literature
Review on Obsolescence

Management in COTS-Centric
Cyber Physical Systems

Outline

• Background

• Research Methodology

• Software Technical Debt

• COTS Technical Debt Taxonomy

• Conclusions

The Notion of Technical Debt

• Originated in software engineering field, coined by Ward Cunningham in 1992

― Immature work, compromising in one dimension in order to get benefits in other dimensions

― Initially concerning ”refactoring” at code level (i.e. implementation) in agile software
development

• Evolved to span across all life cycle phases

― a metaphor reflecting technical compromises that can yield short-term benefit but may hurt the
long-term health of a software system

• Technical Debt Quadrants [Martin Fowler, 2009]

What Constitutes Technical Debt?

• Technical Debt Landscape (Ozkaya, Nord, Kruchten, 2012)

―Differentiate visible elements from invisible elements

• Bavani’s Taxonomy

―Context: distributed teams & agile
testing

o Degree of awareness of technical debt
across distributed teams

o Degree of alignment in managing
technical debt across distributed teams

Existing Taxonomies on Technical Debt

• Rubin’s Taxonomy

― Context: within Agile team

o Naïve technical debt: irresponsible
behaviours or immature practices

― sloppy design, poor engineering practices, and
insufficient testing

o Unavoidable technical debt: usually
unpredictable and unpreventable

― Design evolution, component API changes

o Strategic technical debt: tool for
organizational level trade-off:

― e.g. quality vs. time-sensitivity

• Clark’s Taxonomy

― Context: Riot Games (League of Legends)

o Local debt: standalone debt within blackbox

o MacGyver debt: temporary, short-cut
solutions, but not reliable in the long run

o Foundational debt: future change or rework
required on fundamental design assumption

o Data debt: accumulated ripple effect of TD
over time

COTS Benefits COTS Implications COTS “Technical Debt”

Avoids expensive development &
maintenance

Up front license fees Long term, system level: maybe more
expensive to maintain

Predictable license costs & performance Recurring maintenance fees Yes. Incurred COTS upgrading cost and
system re-evaluation/re-testing cost

Rich in functionality Reliability often unknown/ inadequate;
Unnecessary features compromise
usability, security, performance

Yes. Incurred cost to take care of
functional/non-functional requirement
mismatch and additional verification &
validation

Broadly used, mature technology Functionality, efficiency constraints Yes. Incurred cost to tailor to specific CPS
context; increased limitation over system
evolution

Frequent upgrades often anticipate
organization’s needs

No control over upgrades/maintenance Yes. Increased obsolescence risk due to
life cycle mismatch between CPS system
and COTS components

Dedicated support organization Dependency on vendor Yes. Increased obsolescence risk due to
documentation and support dependency

Hardware/software independence Integration not always trivial;
incompatibilities among different COTS

Yes. Incurred cost to evaluate and
enhance COTS interoperability in COTS-
intensive CPS.

Tracks technology trends Synchronizing multiple-vendor upgrades Yes. Increased obsolescence risk due to
life cycle mismatch between CPS system
and COTS components

“COTS Technical Debt” Analogy in CPS

Outline

• Background

• Research Methodology

• Software Technical Debt

• COTS Technical Debt Taxonomy

• Conclusions

COTS TD Taxonomy in CPS Context

TD Category Description Analogy to existing
work

Function The degree of functionality mismatch between COTS
capabilities and system needs.

Local TD; Data TD

Performance The degree of mismatches between COTS capabilities and
system needs, w.r.t. performance properties.

MacGyver TD; Data TD

Interoperability The degree of interface/ assumption mismatches among
various interdependent COTS components, as well as among
COTS and system custom components.

MacGyver TD; Data TD

Configuration
Version

CPS configuration version planning needs to address solution
availability plan. Greater tendency of COTS version
upgrade/refresh may lead to more obsolete COTS.

Unavoidable TD; Local
TD; MacGyver TD;
Foundational TD; Data
TD

Documentation
& Support

Lack of documentation and vendor support will seriously
impact on issue resolution related to obsolete COTS.

Unavoidable; Data TD

System Evolution
Limitations

Requirements imposed by COTS may place great limitation on
system evolution.

Unavoidable TD;
Foundational TD; Data
TD

Organic People-centric perspective of TD focusing on organizational
decision-making, behaviours, and practices associated with
those personnel responsible for introductions of new
technologies & systems and/or the sustainment of existing
systems

Local TD; Naïve TD;
Strategic TD

COTS TD Management Activities

TD identification

TD representation

TD communication

TD measurement

TD prioritization

TD Monitoring

TD repayment

TD prevention

Guidelines for applying the taxonomy - 1

• TD Identification:

―Detects TD caused by intentional or unintentional COTS decisions

o It is a many-to-many relationship between a COTS component and a COTS TD item;

o It is possible for a COTS TD item to be associated with multiple categories, since
intensive COTS TD items in CPS systems may come from the complex
interdependencies among COTS hardware and software components;

o The identification of System Evolution Limitations TD items is the most difficult,
and it is essential for offsetting COTS obsolescence risk through early involvement
of user/customer/operating organizations in COTS assessment and acquisition
activities;

o It is suggested to label all applicable COTS TD categories according to its relevance
and significance.

―Example techniques:

o COTS assessment; modeling / simulation; prototyping; dependency analysis;
checklist

Guidelines for applying the taxonomy - 2

• TD Measurement:

―Quantifies the benefit and cost of known COTS TD in a system through
estimation techniques

o Measure a COTS TD item whenever it is identified;

o Function, Performance, and Interoperability TD items need to be measured based
on intensive COTS assessment results;

o Re-measure after TD repayment activities.

―Example techniques:

o Timed value; NPV; Real Option, etc.

Guidelines for applying the taxonomy - 3

• TD Repayment:

―Resolves or mitigates COTS TD

o Establish COTS TD repayment strategies, with respect to particular COTS TD types.

― Strategies for resolving COTS mismatches

 Bridge

 Wrapper

 Mediator

 Negotiation

― Strategies for mitigating configuration version TD might include the following options:

 Skipping the new COTS version;

 Upgrade to keep up with every new COTS version;

 Upgrade COTS every other version;

 Upgrade on a regular basis, e.g., every 18-month.

―Example techniques:

o COTS version upgrade; reengineering; refactoring; incident fixing; fault tolerant;
repackaging; automation

Template for representing a TD item

Attribute Description

ID A unique identifier for the COTS TD item.

Name The name of a specific COTS TD item

Location The location of the identified COTS TD item, e.g. the name of the COTS(s) with which it is
associated.

Accountable Party The party responsible to repay the COTS TD item, e.g. COTS vendor, integration team,
program office, specific organization. This identifies the “accountable” debt-holder for the
liability. The Accountable Party is identified at the start of a new design/development/
modernization effort, and can assign TD “tracking” and “maintenance of TD visibility” within
its span of authority/control.

Type The COTS TD type that the COTS TD item is classified into.

Description General information on the COTS TD item.

Open date/time The specific date/time when the COTS TD is identified.

Principle The estimated cost of repaying the COTS TD item.

Interest amount The estimated extra cost of tolerating the COTS TD item.

Interest probability The probability that the interest for the COTS TD item needs to be repaid.

Contagion The degree of spreading of the COTS TD item through the interfaces with other system
components, if this TD is allowed to continue to exist.

Context A certain implementation context of a specific COTS TD item

Propagation rule How the COTS TD item impacts the related parts of the CPS system

Intentionality Is the COTS TD item Intentionally or unintentionally incurred?

Outline

• Background

• Research Methodology

• Software Technical Debt

• COTS Technical Debt Taxonomy

• Conclusions

Conclusions and Future Directions

• Conclusions

― Compelling and critical need for a Systems Engineering technical debt metaphor grows

― The notions of COTS technical debts will help to inform COTS decision making practices in the
acquisition process to avoid unaffordable obsolescence issues particularly in the sustainment
phase

― Taxonomy of COTS-related technical debt can support early identification, communication, and
assessment of obsolescence risks in CPS system engineering life cycles

• Future directions:

― Map major obsolescence issues in existing case studies to the proposed COTS TD taxonomy

― Modelling and Simulation of COTS changes and impact on technical debt aggregation within CPS

― Align COTS TD management techniques and align with existing acquisition activities

Thank you!

&

Questions?

Backup Slides

Hierarchical View of a Simple Technical
Debt Model for COTS-Intensive CPS

Technical Debt = fC(changes
within a component,

required work, TD
management strategy)

Technical Debt = fPU(changes
across a PU, required work,
TD management strategy)

Technical Debt = fS(changes
across entire system,

required work, TD
management strategy)

System

Physical
Unit1

Comp1 Comp2

Physical
Unit 2

Comp3

Modeling COTS-intensive CPS

• COTS-intensive CPS

― A set of physical units, i.e. subsystems, {SSi}, i=1, 2, …. M

― Attributes:

o Budget, schedule

o %reqt’s covered by COTS

o Planned upgrade cycle

o Acquisition cost

o COTS technical debt

• Dependency matrix

― Interface requirements among all components

• Multi-Agent Models

― Each physical unit, SSi

o A set of hardware and/or software components, {Cij}, j=1, 2, …. ni

o Type: Application, Infrastructure, Network, other

― Each component, Cij

o Attributes: %reqt’s gap; acquisition cost, upgrade cycle, upgrading cost

o Type: COTS h/w, COTS s/w, custom h/w, custom s/w, other

Modeling COTS Configuration Version
Technical Debt

• Discrete Event Model

― COTS change events

o COTS change:

― Upgrade cycle: Probabilistic distribution function: e.g. [6month, 12month]

― Change ratio: random variable {0, 1), larger number indicating greater portion of COTS is changed

― TD management actions

o TD Principal Measurement

― Component level: fC(change ratio, required work, TD reduction strategy)

― Physical Unit level: fPU(changes across a PU, required work, TD reduction strategy)

― System level: fS(changes across entire system, required work, TD reduction strategy)

o TD Reduction strategies

― 0: no work

― 1: upgrade every version

― 2: upgrade every other version

― 3: upgrade until end-of-life

o TD Dynamic Forecasting

― f(TD principal, probablity of TD interest, TD interest amount, t)

COTS Change Propagation and Change
Impact Modeling

• COTS Change Impact Analysis

―Dependency matrix

o Coupling rate

―State transition model

o InService

o Impacted

o Obsolete

• Selecting different COTS-
based solutions

• Dynamics of TD aggregation
and reduction

Examples of Decision Scenario
Simulation

LifeCycle

TechDebt

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TE
C
H
N
IC
A
L	
D
EB
T

TIME

TD_NoUpgrade

TD_1Release_C

TD_1Release_S

TD_2Release_C

TD_2Release_S

