U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Shawn Dullen

SERC Fellow/ Process Branch Chief, Advanced Systems Engineering Division

CCDC Armaments Center-Systems Engineering Directorate

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Review of Research into the Nature of Engineering and Development Rework: Need for a Systems Engineering Framework for Enabling Rapid Prototyping and Rapid Fielding

Shawn Dullen

SERC Fellow/ Process Branch Chief, Advanced Systems Engineering Division

CCDC Armaments Center-Systems Engineering Directorate

Distribution Statement A: Approved for Public Release. Distribution is unlimited

03 APR 2019

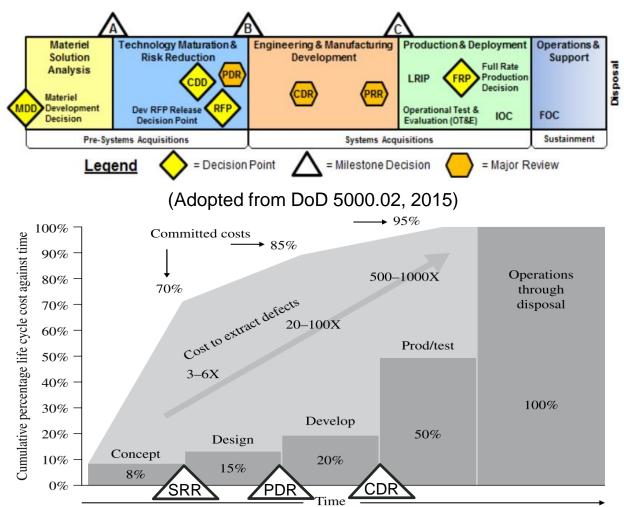
Distribution Statement A: Approved for Public Release. Distribution is unlimited

BOTTOM LINE UP FRONT (BLUF)

- Rework has been a *persistent* problem for product development for decades yet it has *not been* a *focus* area for systems engineering research
- Much of the research on rework has been on *information exchange* and *organizational structure*
 - Analytical methods for understanding and analysis
 - Limited frameworks to reduce rework
 - Untapped advances in technology
- Future research is needed for the development of a systems engineering framework that addresses rework concerns, accelerates iteration and enables rapid prototyping

PROBLEM

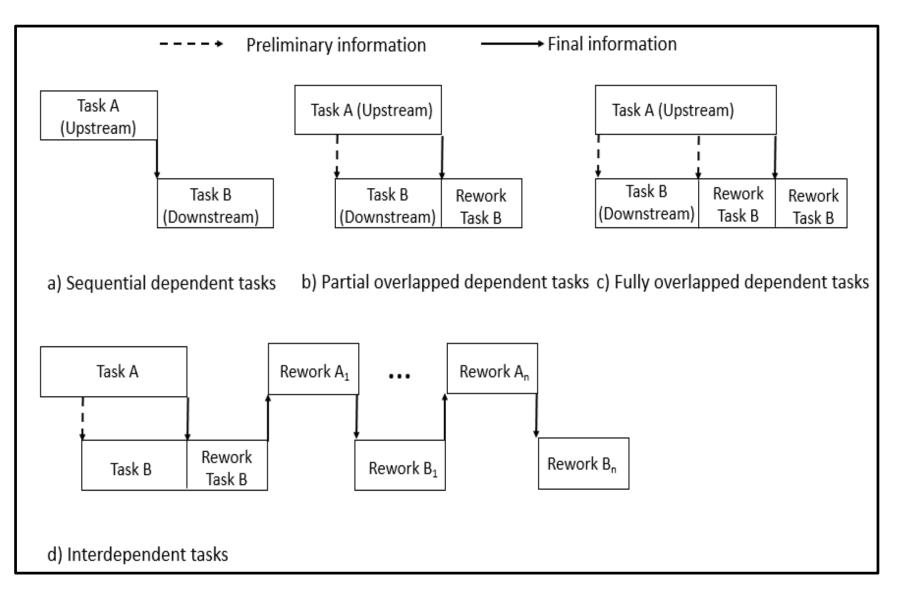
- Engineering design issues are a major concern for the DOD and most Industries
- Engineering design issues lead to reworking the design
- Rework can take up a significant amount of total design time
- The severity depends on where it is found during the product development life-cycle


(Adopted from Orator, 2004)

What is the Nature of Engineering and Development Rework?

SEVERITY OF REWORK

(Adopted from Defense Systems Management College, 1993)


Need to influence rework during Technology Maturation and Risk Reduction (TMRR)

INFORMATION EXCHANGE

MODELING APPROACHES

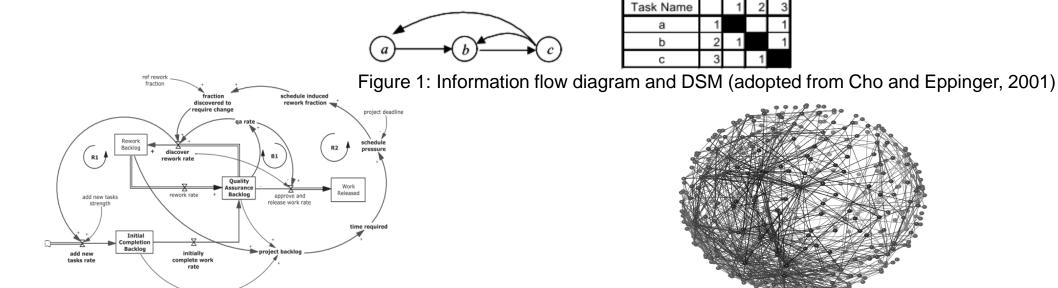


Figure 2: System Dynamics Model (adopted from Taylor and Ford, 2006)

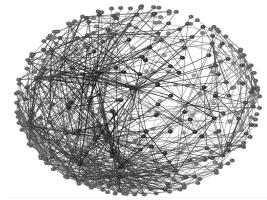


Figure 3: Network Model (adopted from Braha and Bar-Yam, 2007)

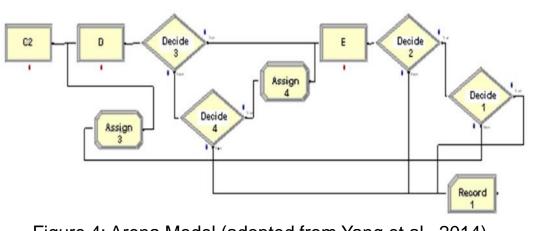


Figure 4: Arena Model (adopted from Yang et al., 2014)

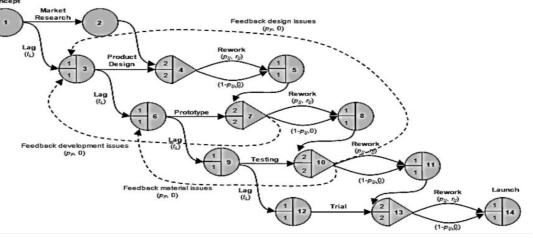
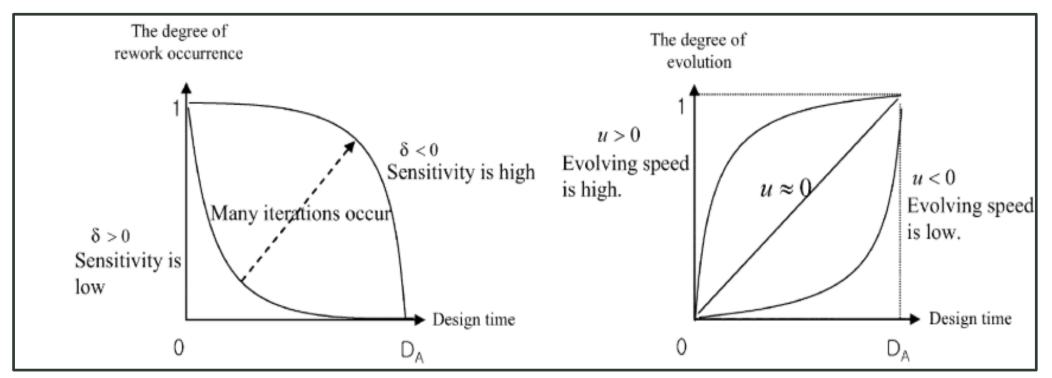


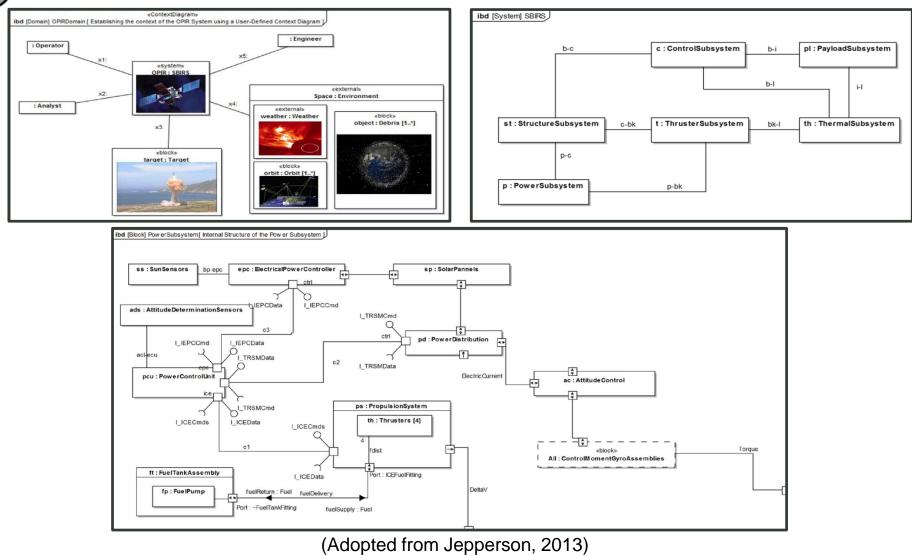
Figure 5: GERT (adopted from Nelson et al., 2016)

MODELING CONSIDERATIONS


- Number of design reviews
- Timing of preliminary information release
- Timing and duration of crashing
- Team coordination and coordination time
- Task dependency (independent, dependent, interdependent)
- Number of activities directly related to one particular activity
- Degree of overlapping (none, partial, fully)
- Type of collaboration, routing, and synchronization
- Amount of overlapping of testing and design activities
- Uncertainty and ambiguity
- Task sensitivity and knowledge evolution

Limited frameworks to reduce rework

INFORMATION SENSITIVITY AND KNOWLEDGE EVOLUTION


(Adopted from Jun, Ahn, & Suh, 2005)

Uncertainty and ambiguity significantly impacts rework

COMPLEXITY

Misalignment of activities and organizational structure

FUTURE RESEARCH

Development of a systems engineering framework during the TMRR phase that addresses rework concerns, accelerates iteration and enables rapid prototyping

- 1) Mitigate the impact of information uncertainty and instability
- 2) Accelerate information evolution
- 3) Reuse knowledge for engineering reasoning

QUESTIONS?

REFERENCES

- Ballard, G. (2000). Positive vs negative iteration in design. Paper presented at the Proceedings Eighth Annual Conference of the International Group for Lean Construction, IGLC-6, Brighton, UK.
- Braha, D., & Bar-Yam, Y. (2007). The statistical mechanics of complex product development: Empirical and analytical results. Management science, 53(7), 1127-1145.
- Browning, T. R., & Eppinger, S. D. (2002). Modeling impacts of process architecture on cost and schedule risk in product development. IEEE Transactions on Engineering Management, 49(4), 428-442.
- Cho, S.-H., & Eppinger, S. D. (2001). PRODUCT DEVELOPMENT PROCESS MODELING USING ADVANCED SIMULATION. Paper presented at the ASME 2001 Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
- Costa, R., & Sobek, D. K. (2003). Iteration in engineering design: inherent and unavoidable or product of choices made? Paper presented at the ASME 2003 International design engineering technical conferences and Computers and information in engineering conference.
- Department of Defense (DoD). (2015). Department of Defense instruction (DoDI) 5000.02: operation
 of the defense acquisition system.
- Ha, A. Y., & Porteus, E. L. (1995). Optimal timing of reviews in concurrent design for manufacturability. Management science, 41(9), 1431-1447.
- Jepperson, D. B. (2013). Using model based systems engineering and the systems modeling language to develop space mission area architectures. NAVAL POSTGRADUATE SCHOOL MONTEREY CA.

REFERENCES-CONT.

- Kennedy, B. M., Sobek, D. K., II, & Kennedy, M. N. (2014). Reducing rework by applying setbased practices early in the systems engineering process. Systems Engineering, 17(3), 278-296.
- Krishnan, V., Eppinger, S. D., & Whitney, D. E. (1997). A model-based framework to overlap product development activities. Management science, 43(4), 437-451.
- Nelson, R. G., Azaron, A., & Aref, S. (2016). The use of a GERT based method to model concurrent product development processes. European Journal of Operational Research, 250(2), 566-578.
- Office, G. A. (2014). Defense Acquisitions: Addressing Incentives is Key to Further Reform Efforts. Retrieved from (GAO Publication No. GAO-14-563T). Washington, D.C.: U.S. Government Printing Office, :
- Reichelt, K., & Lyneis, J. (1999). The dynamics of project performance: benchmarking the drivers of cost and schedule overrun. European management journal, 17(2), 135-150.
- Schrader, S., Riggs, W. M., & Smith, R. P. (1993). Choice over uncertainty and ambiguity in technical problem solving.
- Schwartz, M., & O'Connor, C. V. (2016). The Nunn-McCurdy Act: Background, Analysis, and Issues for Congress. Congressional Research Service Washington United States.
- Shortell, T. M. (Ed.). (2015). INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities. John Wiley & Sons.

REFERENCES-CONT.

- Sosa, M. E., Eppinger, S. D., & Rowles, C. M. (2004). The misalignment of product architecture and organizational structure in complex product development. Management science, 50(12), 1674-1689.
- Taylor, T., & Ford, D. N. (2006). Tipping point failure and robustness in single development projects. System Dynamics Review: The Journal of the System Dynamics Society, 22(1), 51-71.
- Terwiesch, C., Loch, C. H., & Meyer, A. D. (2002). Exchanging preliminary information in concurrent engineering: Alternative coordination strategies. Organization Science, 13(4), 402-419.
- Thomke, S., & Bell, D. E. (2001). Sequential testing in product development. Management science, 47(2), 308-323.
- Ward, A. C. (2007). Lean Product and Process Development Cambridge, MA: The Lean Enterprise Intitute Incoporation.
- Yang, Q., Lu, T., Yao, T., & Zhang, B. (2014). The impact of uncertainty and ambiguity related to iteration and overlapping on schedule of product development projects. International Journal of Project Management, 32(5), 827-837.