
Model-based systems engineering: 
application and lessons from a 
technology maturation project

Bjorn Cole

Georgia Tech Research Institute



Model-based systems engineering: 
application and lessons from a technology 

maturation project
Bjorn Cole, Richard Wise, Sean Higgins - Georgia Tech Research Institute

Nguyen La, Paul Kim – Johns Hopkins Applied Physics Lab

Vikram Mittal, Stephen Gillespie – US Military Academy

POC: Bjorn Cole – bjorn.cole@gtri.gatech.edu (404) 407-6453

mailto:bjorn.cole@gtri.gatech.edu


Outline for the Talk

• MBSE experience from organizations supporting TALOS

• Team Structure

• Specific modeling approaches
• Electrical systems engineering and harness

• Test coverage and functional description

• Software/hardware integration

• Overall lessons



Quick Introduction to TALOS

• Tactical Assault Light Operator Suit

• Effort started in 2013 for building ingress

• Supported efforts in developing armor, vision, exoskeletons, 
and mobile power

• Current effort is exoskeleton and operator equipment 
research

• Government is the integration lead (Joint Acquisition Task 
Force) with many supporting developers around the country



Team Structure

• Very distributed team
• 2-3 members at each of the institutions below

• Remote connection to JATF-TALOS in Tampa

• Technical performance around the country

• Many practitioners have strengths outside of systems 
engineering
• Formal backgrounds in aerospace, electrical, software, 

mechanical, and bio-inspired engineering

• Weekly sync telecons, best practices and work backlog kept 
on SOCOM Confluence, one-on-ones by phone and WebEx



Electrical Systems Engineering Support

• Capture electrical functions between major components 
and their relevant standards
• Physical – bolts, straps, mechanical hard points in structure

• Logical – data or signals in various formats

• Electrical – power supply



Electrical Systems Engineering Support

• Implementation of carriers for electrical functions now supported in 
the model and mapping to wire harness

• Harness model formatted to match harness engineer at APL’s visual 
expectations
• Captures pair twisting, pinouts, connector terminating and bare wire



Electrical Systems Engineering Support

• Actual wire harness bound to electrical function 
representation in the model to support reporting and 
comprehensive capture of implementation

• Physical to functional connection also drove a revision to 
libraries to acknowledge that physical layer of data signals 
is still electricity



Electrical Systems Engineering Support

• Basis of function library took multiple revisions to arrive at 
simple unification of physical data layer and electricity

• All electrical flows can be connected; question is where a 
code reader is available to interpret signals



Test and Function Linking

• Very lightweight approach to connecting tests to 
functionality of integrated system

• Built for prototyping efforts where test coverage is 
important, but repeatability and auditing are not

• Criticality of test flows up to CONOPS and necessity

• Also a trace to performance requirements (“how well”)



Test and Function Linking

• Top-down flow
• CONOPS down to system functions down to CI functions

• Bottom-down flow
• CI Functions up to system functions seeking CONOPS use



Test and Function Linking

• Experience of effort showed nicely the two end points of 
formality and framework weight
• Heavyweight Test and Evaluation Framework built off of the UML 

Test Profile – rigorous approach for programs of record and 
integrated schedules

• Lightweight linking – provides visibility into coverage and 
criticality but doesn’t go to logistics or auditing

• Heavyweight framework captures all information necessary 
to plan a test; question is who comes into the loop



Hardware/Software Integration

• Modeling pattern based on reality of software
• Abstract model of software flow from UML provides a description 

of major blocks of algorithm, data flow, and order of execution

• Real-time software needs to know about available resources 
(computing time and memory) to assure deadlines are met

• Real software is interpreted or compiled into machine code for 
execution on processors or controllers



Hardware/Software Integration

“Driving Work” interface talks about how 
compute cycles are made available to 
move the program forward

This shows the full stack of a main 
program accessing compute through the 
Operating System, which schedules 
compute availability to different 
programs



Hardware/Software Integration

“Working Memory” interface talks about 
how much memory a program can access 
to store variables and working values

This shows the full stack of a main 
program accessing memory through the 
Operating System, which has a memory 
manager to supply programs



Hardware/Software Integration

“Instruction Feed” interface talks about 
how program is rendered into a stream of 
instructions over time that flows at the 
rate of available resources

This shows the full stack of a main 
program loaded onto the CPU as 
mediated by the Operating System



Hardware/Software Integration

This area shows how a main program can 
delegate resources to and forward 
instructions from sub programs

One type of sub program is a networking 
and communications library that can talk 
to relevant parts of the OS and 
supporting hardware to analyze 
connectivity of services to each other 
over networks



Hardware/Software Integration



Lessons: Keeping the Model Clean

• Any long-running system model eventually needs a 
mechanism to support cleaning and removal of unused 
elements

• Developed a heuristic to help
• Table of Contents points to diagrams that are of interest

• Only elements on a diagram or supporting what is on diagram 
(e.g., more general Blocks of portrayed Blocks) are of interest

• Everything else is marked for potential cleaning through model 
queries



Lessons: Co-location vs Remote Support

• Systems teams require some degree of co-location or other 
means of getting immersed in technical design and 
approach
• Hallway conversations still matter

• Remote immersion is possible (and enhanced through a shared 
systems model) but requires significant effort



Lessons: Finding the Right Weight

• All systems engineering and project management have a 
“consent of the governed” aspect – if work is not well-
justified or tracked it will be de-prioritized

• Finding right weight on test tracking required a back-to-
basics thought on purposes of test products
• Assuring coverage versus supporting audits

• Looking over planners’ shoulder or providing freedom

• Keep in mind that this effort is not free – it consumes time 
and schedule!



Lessons: Directions for MBSE Tooling

• MBSE tools are currently oriented for architects and 
systems engineers to develop a high-level description of a 
system within the tool and pass on to other engineers

• When direction of data is reversed (other engineers to 
MBSE’s), the tools are far too slow for good response
• Non-responsiveness is a major threat to SE credibility on a 

project and a major opening for the development of “shadow 
models”

• Current importers are helpful, but too trivial for connection 
to custom spreadsheets



Summary

• Organizations below have supported a virtual, distributed 
model-based systems engineering team for TALOS

• Developed patterns driven by engineering needs near the 
hardware and software

• Lessons learned based on team dynamics and challenges of 
finding right amount of SE to apply to system prototyping


