Characterizing System Architectures Using Network Data

Zhenglin Wei

George Washington University

WASHINGTON, DC

Characterizing System Architectures Using Network Data

By

Zhenglin Wei and David A. Broniatowski

17th Annual Conference on Systems Engineering Research

April 4th, 2019

Washington DC

- <complex-block>
- Systems' architectures drive their lifecycle properties (e.g. flexibility, controllability etc.)
- However, measuring the architectures of real complex systems remains a challenge
- Characterize network representations of real-world systems in multiple contexts by their <u>laterality</u> and <u>verticality</u>, introduced in the generic architecture theory
- Propose a new set of metrics to measure the concordance of real-world systems with four generic structures

Generic Architecture Theory

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

"Generic" architectures proposed and developed by J. Moses and D. Broniatowski

- If we understand the behavior of the "generic" architecture of the system
- Then the real world systems can be treated as mixture of these systems in different ways

- A: Tree Structure
- B: Layered Structure
- C: Grid Structure
- **D: Team Structure**

Broniatowski, D. A., & Moses, J. (2016). Measuring Flexibility, Descriptive Complexity, and Rework Potential in Generic System Architectures: METRICS FOR GENERIC SYSTEM ARCHITECTURES. *Systems Engineering*, *19*(3), 207–221. <u>https://doi.org/10.1002/sys.21351</u>

Generic Architecture Theory

WASHINGTON, DC

- Using topological characteristics to measure laterality and verticality in real-world systems (represented as directed networks)
- Data: 67 networks representing systems in different contexts are collected from different sources

SOC-DOLPINES N/E: 62/159 Source: UCINet

ECO-STMARKS (FoodWeb) N/E: 54/353 Source: UCINet Characterizing System Architectures Using Network Data

ROAD-EU N/E: 1.2K/1.4k Source: Network Repository

RT-OBAMA N/E: 3.2K/2.4k Source: Network Repository

4/3/19 (zhenglin@gwu.edu)

6

- Using topological characteristics to measure laterality and verticality in real-world systems (represented as directed networks)
- Data: 67 networks representing systems in different contexts are collected from different sources

Nodes: 9 ~ 12k Edges: 8 ~ 100K

Contexts: Social Network, Infrastructures, Power Systems(Power Grids), Tech Products (Routers), Information Systems, Biological Systems, Ecological Systems etc.

Topological Characteristics

WASHINGTON, DC

Set--- I : 26 Network-level cohesion features

- Commonly used in social network analysis to characterize networks
- Density, Degree Centrality, Closure etc.
- Focus on networks' overall properties instead of particular nodes or edges
- Unsupervised Learning PCA
- K-means Clustering analysis

Set--- 2 : Network Motifs (3-node subgraphs)

- Motifs*: "simple building blocks" of a network
- NLP: "Bag of words" "Bag of motifs"
- Motif-Frequency, Inverse Network Frequency (analog to TF-IDF)
- Singular Value Decomposition to find latent factor
- K-means Clustering analysis

Set-1: Network Cohesion Features

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

1.	2.	3.	4.	5.	6.	7.	8.
Number of Nodes	Number of Edges	Edge/Node	Average Degree	Indegree H-Index	Degree Centralizatio n	Outdegree- Centrality	Indegree- Centrality
9.	10.	11.	12.	13.	14.	15.	16.
Density	Number of Component s	Component Ratio	Connectedne ss	Fragmentatio n	Closure	Average Distance	Std. Deviation of the Distance
17.	18.	19.	20.	21.	22.	23.	24.
Diameter	Wiener Index	Dependency Sum	Breadth	Compactness	Mutual edges	Asymmetric Edges	Null Edges
25.	26.						
Arc Reciprocity	Dyad Reciprocity						

Table R1: 26 Network Cohesion Features

Dimensionality Reduction: Principal Component Analysis

Figure R1: Scree-plot of PCA analysis

Set-1: Network Cohesion Features

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Principal Component-2:

- Wiener Index
 - ρ= 0.79 ٠
 - The sum of distances between all pairs of vertices of G
- Dependency Sum
 - .ρ= 0.77 Hierarchy dependency of all nodes
- Invertecalitek
 - ρ= 0.58 ٠
 - The largest number x such that there are x vertices of degree at least x in the underlying graph

Figure R2: Loading Plot of the first 2 PCs

Principal Component-1:

- Compactness
 - $(\rho = 0.95, 1-Breadth)$ ٠
 - The mean of all the reciprocal distances
 - Fragmentation
 - $(\rho = -0.80, 1$ -Connectedness) ٠
 - Proportion of pairs of vertices

ntencommercedhess

- <u>Density</u> (ρ = 0.79)
 - Number of edges divided by the • maximum number possible
- Closure (ρ =0.73)
 - The number of non-vacuous transitive triples divided by number of paths of length 2
- <u>Degree Centralization (ρ =0.63)</u>
 - The number of links incident upon a node 10

Clusters Based on PCs

Barabási, Albert-László, and Márton Pósfai. 2016. *Network Science*. 1 edition. Cambridge, United Kingdom: Cambridge University Press. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network Motifs: Simple Building Blocks of Complex Networks. *Science*, *298*(5594), 824–827. <u>https://doi.org/10.1126/science.298.5594.824</u>

4/3/19 (zhenglin@gwu.edu)

Characterizing System Architectures Using Network Data

"Bag of motifs"

Motif-Frequency, Inverse Network Frequency (MF-INF, analog to TF-IDF)

$$MF_{i,j} = \frac{C_{i,j}}{\sum_{k}^{n} c_{k,j}} \qquad INF_{i,j} = \log \frac{|N|}{|\{j : c_{i,j}^{-1} \mid 0\}|}$$

 $MF - INF_{i,i} = MF_{i,i} \land INF_{i,i}$

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network Motifs: Simple Building

Blocks of Complex Networks. Science, 298(5594), 824–827. https://doi.org/10.1126/science.298.5594.824

Singular Value Decomposition – Latent Factor

Barabási, Albert-László, and Márton Pósfai. 2016. *Network Science*. 1 edition. Cambridge, United Kingdom: Cambridge University Press.

4/3/19 (zhenglin@gwu.edu)

Characterizing System Architectures Using Network Data

1 1

Set-2: Latent Factor Analysis

Clusters Based on PCs

THE GEORGE WASHINGTON

UNIVERSITY

Clusters Based on Motifs

4/3/19 (zhenglin@gwu.edu)

Characterizing System Architectures Using Network Data

THE GEORGE WASHINGTON

UNIVERSITY

4/3/19 (zhenglin@gwu.edu)

Characterizing System Architectures Using Network Data

- 1) laterality and verticality are meaningful characteristics of systems that may be used to assess similarity to generic architectures
- 2) network cohesion features and network motifs may both be used to distinguish laterality and verticality and group systems

Limitations:

- relatively small sample size and unbalanced networks by domains
- only consider 3-node motifs due to limited computational power

Future work:

- explore more varied network data, utilizing faster algorithms, examining how the choice of network representation interacts with systems structures, and exploring the association between these measures and system lifecycle properties.

Backup Slides

Feature Names	Description					
Nodes	Number of nodes					
Edges	Number of edges					
Edges/Nodes	Ratio of N/E					
Avg Degree	The average degree in the underlying graph					
Indeg H-Index	The largest number x such that there are x vertices of degree at least x in the underlying graph					
Deg Centralization	The number of links incident upon a node					
Out-Central	The number of ties directed to the node					
In-Central	The number of ties that the node directs to others					
Density	Number of edges divided by the maximum number possible					
Components	Number of weak components					
Component Ratio	Component Ratio Number of components minus one divided by the number of actors minus one					
Connectedness	1 minus the fragmentation					
Fragmentation	Proportion of pairs of vertices that are unreachable					
Closure	The number of non-vacuous transitive triples divided by number of paths of length 2					
Avg Distance	Average geodesic distance amongst reachable pairs					
SD Distance	Standard deviation of the geodesic distances amongst reachable pairs					
Diameter	Length of the longest geodesic					
Wiener Index	The sum of distances between all pairs of vertices of G					
Dependency Sum	The sum of dependency of all nodes					
Breadth	1 minus the compactness					
Compactness	The mean of all the reciprocal distances					
Mutual	The probability of mutual relation					
Asymmetric	The probability of Asymmetric relation					
Nulls	The probability of nulls					
Arc Reciprocity	The propertion of reciprocated arcs of all outgoing arcs 20					
Dyad Reciprocity	The proportion of symmetric dyads of all dyads					

Left : scree plot of principle components of cohesion features; Right: Loading table

Results of Principle Component Analysis

C1+C2 = 54% variance

C.1-Laterality

C.2-Verticality

cicality	Breadth	-0.95					
	<u>Compactness</u>	0.95					
	<u>Connectedness</u>	0.80					
	Fragmentation	-0.80	Int	erconn	ectedno	ess	
	Null Edges	-0.80					
	<u>Density</u>	0.79				0.50	
	Component Ratio	-0.79					
	<u>Closure</u>	0.73					
	Mutual edges	0.68				0.62	
	Degree Centralization	0.63					
	Outdegree- Centrality	0.62					
	Components	-0.62					
	Indegree-Centrality	0.55					
	<u>Wiener Index</u>		0.79	Diff	icultv o	f reachi	ing
	<u>Dependency Sum</u>		0.77	every node in one			e
	Number of Nodes		0.73		direc	tion	
	Number of Edges		0.66				
	Dyad Reciprocity	0.59		-0.61			
	Indegree H-Index		0.58	0.60			
	Edges/Nodes			0.58			
	Average Degree			0.53			0.51
	SD Distance				0.77		
	Average Distance				0.73		
	Diameter				0.74		
DMSA Lab I	MAsymmatric Edges						21

zhenglin@gwu.edu

